Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions.
نویسندگان
چکیده
We study photocurrent generation in individual suspended carbon nanotube p-n junctions using spectrally resolved scanning photocurrent microscopy. Spatial maps of the photocurrent allow us to determine the length of the p-n junction intrinsic region, as well as the role of the n-type Schottky barrier. We show that reverse-bias operation eliminates complications caused by the n-type Schottky barrier and increases the length of the intrinsic region. The absorption cross-section of the CNT is calculated using an empirically verified model, and the effect of substrate reflection is determined using FDTD simulations. We find that the room temperature photocurrent quantum yield is approximately 30% when exciting the carbon nanotube at the S44 and S55 excitonic transitions. The quantum yield value is an order of magnitude larger than previous estimates.
منابع مشابه
Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions
Articles you may be interested in Single carbon nanotube photovoltaic device Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction Appl. Large-signal and high-frequency analysis of nonuniformly doped or shaped pn-junction diodes Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes Appl.
متن کاملProbing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy.
Carbon nanotubes show vast potential to be used as building blocks for photodetection applications. However, measurements of fundamental optical properties, such as the absorption coefficient and the dielectric constant, have not been accurately performed on a single pristine carbon nanotube. Here we show polarization-dependent photocurrent spectroscopy, performed on a p-n junction in a single ...
متن کاملPhotocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors.
We use scanning photocurrent microscopy (SPCM) to investigate the properties of internal p-n junctions in ambipolar carbon nanotube (CNT) transistors. Our SPCM images show strong signals near metal contacts whose polarity and positions change depending on the gate bias. SPCM images analyzed in conjunction with the overall conductance also indicate the existence and gate-dependent evolution of i...
متن کاملOptoelectronics in Carbon Nanotube Photodiodes and Graphene Hetero-Interface Devices
The excellent thermal, electronic and optical properties of carbon nanotubes (NTs) and graphene strongly motivate the use of these materials in optoelectronic devices. Here, we review our recent investigations of NT and graphene optoelectronic devices. By studying individual NT and graphene devices, we aim to uncover novel physical phenomena and establish a foundation for future applications in...
متن کاملBending and twisting of suspended single-walled carbon nanotubes in solution.
We combine suspended carbon nanotube transistors with optical trapping techniques and scanning photocurrent microscopy to investigate the motion of suspended single-walled carbon nanotubes in solution. We study the movement of nanotubes by monitoring their photocurrent images and measure their thermal fluctuations by imaging microbeads that are tightly attached to nanotubes by single-stranded D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 9 شماره
صفحات -
تاریخ انتشار 2016